
 
 
Supplementary Fig. 1: The nucleolar calibration set 
The calibration set used consisted of four control proteins whose depletion, we 
established, strongly disrupts nucleolar structure. These control proteins are: the 
RNA polymerase I (Pol I) transcription factor TIF1A, nucleolin (NCL), and 
nucleophosmin (NPM). As further standardization controls, we used mock-treated 
(MOCK) cells, cells treated with an siRNA targeting FBL or GFP, and cells treated 
with a non-targeting siRNA (SCR). Blue signal, DNA stain (DAPI); green signal, 
GFP. Left column, images captured at 20x magnification in widefield mode. Right 
column, images captured at 40x magnification in confocal mode. To the right of 
these images, schematics depicting the effect of siRNA-mediated depletion on 
nucleolar structure and signal intensity. 



 

 
 
Supplementary Fig. 2: Benchmarking the automated unsupervised 
classification of nucleolar disruption phenotypes 
To benchmark our novel classification algorithm, we compared the automated 
classification described in the text with a manual one. The manual classification 
was based on the fine visual inspection of representative images obtained after 
depletion with each siRNA used and on the assignment of nucleolar disruption 
phenotypes to three arbitrarily defined classes corresponding to weak, 
intermediate, and strong disruption. Superimposition of the automatically and 
manually obtained classifications made us highly confident that assignment to 
phenotypic classes on the basis of our automated procedure is robust.  
(a) PCA (see Fig. 1b). Each dot represents a population of cells treated with one 
siRNA specific to one r-protein.  Dots are color-coded according to a manual 
classification based on the fine visual inspection of the microscopic images. The 
non-targeting control (Scramble, SCR) is in yellow. Strong contributors to 
nucleolar structure maintenance are wine-colored; intermediate contributors are 
in red; weak contributors are in pale blue. 
(b) Representative images illustrating the manual classification of r-proteins as 
weak, intermediate, and strong contributors to nucleolar structure maintenance. 
Blue signal, DNA stain; green signal, fibrillarin. 
 



 
 
Supplementary Fig. 3: Kinetics of nucleolar disruption after siRNA-mediated 
r-protein depletion  
The data show that the computed iNo values reliably reflect phenotype severity, 
and that nucleolar disruption is best scored in cells having undergone two 
successive rounds of nucleolar breakdown/nucleolar genesis, corresponding to 
two cell divisions (~72h).  
(a) Values of the nucleolar disruption index (iNo) obtained after siRNA-mediated 
depletion of the indicated r-protein for 24 h, 48 h, and 72 h.  
(b) Representative images for thirteen r-proteins tested at each time point. Blue 
signal, DNA stain; green signal, fibrillarin. #1 refers to the siRNA used (see 
Methods). 



 

 
 
Supplementary Fig. 4: Quantitative monitoring of nucleolar morphology 
based on detection of the endogenous granular component marker PES1 
The data show that the iNo values can be computed equally on the basis of DFC 
(fibrilarin, FBL) or GC (PES1) antigen detection. 
(a) Values of the nucleolar disruption index (iNo) obtained after 3 days of siRNA-
mediated depletion of the indicated r-protein as calculated on the basis of the 
fibrillarin signal (in green) or the PES1 signal (in red). 
(b) Representative images for the thirteen r-proteins tested. In each case the 
siRNA n°1 (#1) was used (see Methods). Blue signal, DNA stain; green signal, 
fibrillarin; red signal, PES1. 
 
 

 



 
 

 
 
Supplementary Fig. 5: Involvement of small subunit r-proteins in pre-rRNA 
processing 
(a) Representative examples of northern blots for each of the three classes of 
SSU r-proteins defined in this work (for a full dataset see 
www.RibosomalProteins.com and Supplementary Fig. 11). A calibration set 
consisting of mock-treated cells and cells treated with a non-targeting siRNA 
(SCR) or a siRNA targeting UTP18 or NOL9 was used systematically (see ref.1). 
Schematics of the RNA intermediates detected are shown on the left. Ratios of 
28S to 18S mature rRNA were calculated from bioanalyzer electropherograms. 
(b) Expanded version of Fig. 4c, showing all RNA intermediates detected and 
quantified.  



 

 
Supplementary Fig. 6: Involvement of large subunit r-proteins in pre-rRNA 
processing 
(a) Representative examples of northern blots for each of the four classes of LSU 
r-proteins defined in this work (for a full dataset see www.RibosomalProteins.com 
and Supplementary Fig. 11). A calibration set consisting of mock-treated cells 
and cells treated with a non-targeting siRNA (SCR) or a siRNA targeting UTP18 
or NOL9 was used systematically (see ref.1). Schematics of the RNA 
intermediates detected are shown on the left. 28S/18S mature rRNA ratios were 
calculated from bioanalyzer electropherograms. 
(b) Expanded version of Fig. 4d, showing all RNA intermediates detected and 
quantified.  



 
 
Supplementary Fig. 7: Comparison of our classification of r-proteins 
according to their involvement in pre-rRNA processing with previous 
studies 
The figure shows that our work either confirms (small subunit r-proteins) or 
considerably complements (large subunit r-proteins) the literature.  
3-D models of human ribosomal subunits based on PDB entries 3J3D, 3J3A, 
3J3F, and 3J3B. Left, subunit interface views; right, solvent-exposed views. The 
aminoacyl (A), peptidyl (P), and exit (E) tRNA sites are indicated. Morphological 
features of the subunits are highlighted. On the LSU: the L1-stalk, central 
protuberance (CP), and phospho-stalk (P-stalk). On the SSU, the beak (Be), 
head (H), platform (Pt), body (Bd), left foot (Lf), and right foot (Rf). 
(a) Previous studies: conducted on cervix cancer cells where p53 expression is 
disrupted by HPV integration (HeLa cells). The SSU r-proteins were tested in ref. 
2; six out of the forty-seven LSU r-proteins were tested in ref. 3. 
(b) This work: conducted on colon carcinoma cells expressing p53 normally 
(HCT116 p53+/+)(based on Fig. 4 and Supplementary Figs. S5,S6,S11). All r-
proteins were tested.  



 
 

 
 
Supplementary Fig. 8: Efficiency of r-protein depletion established at the 
mRNA level by RTqPCR 
For forty-eight r-proteins whose depletion did not significantly affect p53 
accumulation (see Fig. 6b), the residual level of mRNA was established by 
RTqPCR and found to be below 20% for forty of them, and to range between 
20% and 45% for the remaining eight. Total RNA was extracted from HCT116 
cells treated for 2 days with an siRNA specific to transcripts encoding the 
indicated r-proteins. Residual levels of mRNA were established by RTqPCR and 
normalized to those observed in cells treated with a non-targeting siRNA control 
(SCR). Each experiment was performed in triplicate. 
 



 
 
Supplementary Fig. 9: Depletion of twenty-four r-proteins out of eighty 
leads to a significant five-fold-increased level of p53, and this increase 
requires the presence of uL5 and uL18 
HCT116 p53+/+ cells were depleted for 2 days with an siRNA specific to 
transcripts encoding the indicated protein. Each protein was depleted by itself, or 
in combination with uL18 or uL5 depletion. As control, cells were treated with a 
non-targeting siRNA (SCR). Total protein was extracted and processed by 
western blotting with antibodies targeting p53, p21 (a transcriptional target of 
p53), and, as loading control, β-actin. Bands were reveled by luminescence. 
(a) Effect of individually depleting each of the 24 r-proteins 
(b) Effect of depleting the central protuberance assembly factor BXDC1 or RRS1. 
 



 



Supplementary Fig. 10: The sequence of assembly of r-proteins onto 
assembling ribosomal subunits has been remarkably conserved throughout 
evolution 
(a) 3-D models of bacterial ribosomal subunits based on PDB entries 2AVY and 
2AW4. The r-proteins are color-coded according to their early, intermediate, or 
late order of assembly, as established in vitro (refs 4-8).  
(b) 3-D models of budding yeast ribosomal subunits based on PDB entries 3U5B, 
3U5C, 3U5D, and 3U5E. The r-proteins are labeled on the basis of their being 
required for specific early, intermediate, or late pre-rRNA processing steps in 
yeast cells (refs 9, 10). This largely corresponds to their kinetics of assembly 
established in vivo (ref. 11). 
(c) 3-D models of human ribosomal subunits based on PDB entries 3J3D, 3J3A, 
3J3F, and 3J3B. The r-proteins are classified with respect to their impact on 
specific processing reactions in human cells according to this work (based on Fig. 
4, Supplementary Figs. S5,S6,S11). 
Left, subunit interface views; right, solvent-exposed views. The aminoacyl (A), 
peptidyl (P), and exit (E) tRNA sites are indicated. Morphological features of the 
subunits are highlighted. On the LSU: the L1-stalk, central protuberance (CP), 
and phospho-stalk (P-stalk). On the SSU, the beak (Be), head (H), platform (Pt), 
body (Bd), left foot (Lf), and right foot (Rf). 
 



 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Fig. 11: An example of a complete data sheet for one r-
protein. The datasheets for all the eighty human r-proteins is available on 
the companion website at Www.RibosomalProteins.Com 
The data sheet shows the position of the r-protein on mature subunit (A), its 
impacts on pre-rRNA processing and mature rRNA accumulation (B), on 
nucleolar structure (C), and on the p53 steady-state level (D). 
(A) 3-D models of human ribosomal subunits based on PDB entries 3J3D and 
3J3A, for SSU r-proteins, and 3J3F and 3J3B, for LSU r-proteins. The positions of 
individual r-proteins on the mature subunits are highlighted. On small subunits, 
the 18S rRNA is shown in gray; on large subunits, the 5S, 5.8S, and 28S rRNAs 
are shown in red, blue, and gray, respectively. Left, interface view; right, solvent 
view. The main ribosomal features are indicated (see Supplementary Fig. 10). 
(B) Effects of r-protein depletion on pre-rRNA processing and mature rRNA 
accumulation: northern blots and ethidium-bromide-stained denaturing agarose 
gels showing all the pre-rRNA intermediates and mature rRNAs detected. The 
28S/18S rRNA ratio was calculated from electropherograms. A calibration set 
(described in Supplementary Figs S5,S6) is included for reference. Schematics 
representing the RNAs detected are shown to the left. Quantifications are 
available in Fig 4. and Supplementary Figs S5,S6. 
(C) Effect of r-protein depletion on nucleolar structure: representative microscopic 
images (blue signal, DAPI; green signal, fibrillarin) obtained after treatment in 
duplicate screens (i and ii) performed with three different siRNAs (#1, #2, and 
#3). iNo values for each screen are indicated to the right and on a scaled bar at 
the bottom. The iNo value ranges between 0 (unperturbed nucleolus) and 0.2 
(severely disrupted structure). 
(D) Effect of r-protein depletion on the p53 steady-state level: fluorescent 
quantitative western blotting was performed in triplicate (i, ii, iii). The p53 signal 
was corrected for loading, using β-actin detection as a reference, and expressed 
with respect to the signal obtained in cells treated with a non-targeting (Scr) 
control (lane 2). The p53 signal was expressed as a mean of three independent 
experiments (see Fig. 6 for details). A calibration set (described in Fig. 6) is 
included for reference.  
 
 
 
 
 
 
 



 
 
Supplementary Fig. 12: Examples of uncropped Northern blots  
An example of a high resolution denaturing agarose gel is shown. 
(a) Ethidium bromide staining reveals the mature 18S and 28S rRNAs.  
(b,c,d) Northern blotting with specific probes reveals the pre-rRNAs. All RNA 
species were identified by differential hybridization with specific probes, and by 
reference to a calibration set consisting of two proteins (UTP18 and NOL9) 
whose depletion leads to well-characterized pre-rRNA processing inhibitions, as 
described in ref. 1. The probes used (ITS1 in b, ITS2 in c, and 5’-ETS in d) are 
described in the methods section.  
 
Lane 1, mock; lane 2, SCR; lane 3, UTP18; lane 4, NOL9; lane 5, uS3; lane 6, 
uS17; lane 7, uL30#1; lane 8, uL30#2; lane 9, uL13#1; lane 10, uL13#2; lane 11, 
eL14#1; lane 12, eL14#2; lane 13, ul22#1; lane 14, ul22#2; lane 15, eL18#1; lane 
16, eL18#2; lane 17, eL22#1; lane 18, eL22#2; lane 19, uL14#1; lane 20, 
uL14#2; lane 21, uL24#1; lane 22, uL24#2. #1 and #2 refer to the siRNAs used 
(see methods section). 
 



 
Supplementary Fig. 13: Examples of uncropped Western blots 
All western blot hybridizations performed in this work used well-characterized 
commercially available antibodies (see methods section). 
On fluorescent (a) and luminescent (b) detections, p53 migrated between the 35 
kDa and the 55 kDa molecular weight bands, as expected (p53 has a molecular 
weight of 43.7 kDa). The p53 signal was increased upon nucleolar stress 
activation (U8 depletion in a, and uL1 depletion in b, by comparison to the signals 
observed in cells treated with a non-targeting Scr control). The p53 level was 
severely reduced upon codepletion of uL1 with uL5 or uL18 (b).  
On the fluorescent screening gels (representative examples shown in c), the β-
actin loading control (in green) was detected as a single band immediately below 
the p53 signal, as expected (β-actin has a molecular weight of 42 kDa). The p53 
band (red signal) was consistently detected at low levels in the duplicated 
HCT116 p53 +/+ cells treated with a non-targeting siRNA (p53 +/+ lanes), this 
served as a baseline control. The p53 levels increased substantially upon 
nucleolar stress caused by U8 snoRNA depletion (#U8 lanes), this served as a 
positive control. The p53 band was never detected in the negative control 
provided by the HCT116 p53 -/- isogenic cell line (p53 -/-). The stars denote 
nonspecific bands. 



Supplementary Fig. 14: Nuclei aggregates are eliminated on the basis of a 
shape convexity analysis. Two segmented juxtaposed nuclei are illustrated. In the 
direction of the principal axis X and Y, if δout, δ1

in, and δ2
in are above a threshold 

on one of the lines parallel to the principal axis, the shape is considered to 
include more than one nucleus. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
Supplementary Fig. 15: Results of segmentation of nuclei for highly contrasted 
(a) and weakly contrasted (b) DAPI images.  
Red, green, and cyan contours correspond to the connected components that are 
detected based on the proposed hierarchical thresholding. Green regions are 
rejected because of their concavity. Cyan regions are rejected because the 
DAPI/GFP intensity analysis indicates that cells are probably not in interphase. 
Only nuclei circled in red remain in our analysis, and for the subsequent analysis, 
we consider the orange segmentation, obtained after morphological operations: 
13x13 dilation, followed by 3x3 erosion. 



 
 

 
 
Supplementary Fig. 16: Samples of nucleoli from SCR-treated control cells (a), 
from cells with a range of high level of nucleolar disruption (b) and from cells 
depleted of a specific protein of interest (c). Cell nuclei highlighted with the same 
color-code were treated with the same siRNA. Images were normalized by 
percentile 99.9%.  
 



 
Supplementary Fig. 17: Fibrillarin-GFP intensity profile of nucleoli in a SCR-
treated control cell (a) or in a cell depleted for the protein uL5 (b).  
(a) corresponds to the nucleus in row 1, column 2 in Supplementary Fig. 16, 
panel a. 
(b) corresponds to the nucleus in row 1, column 5 in Supplementary Fig. 16, 
panel c. 
 



 
Supplementary Fig. 18: Illustration of the shape factors associated to a 
connected component C (black contour).  
(a) The elongation factor reflects the ratio between the principal axes second 
order moments, while the elliptical regularity measures the area ratio of the 
smallest external ellipsoid (in blue) to the connected component.  
(b) The concavity ratio measures the area ratio between the convex hull (in 
green) and the connected component. 
 



 
 
 
Supplementary Fig. 19: Distribution of local maxima (blue dots) and local 
minima (red dots) in the images shown in Supplementary Fig. 16. It is apparent 
that the density of local minima is higher in nucleoli from cells with high level of 
nucleolar disruption (panel b) or from cells depleted of a protein of interest (panel 
c) than in nucleoli from SCR-treated control cells (panel a). 



 
Supplementary Fig. 20: Fisher’s optimization criterion as a function of three 
features (a, b, and c) parameters. 
 
 



 
Supplementary Fig. 21: L1-norm of the discrepancy vectors computed from the 
images presented in our experimental screens of 80 r-proteins (see 
www.RibosomalProteins.com).



 
 
Supplementary Fig. 22: Distribution of the discrepancy vectors according to the 
two most significant components derived from a PCA analysis. 
Color code: blue, no (or weak) impact on nucleolar structure; magenta, 
intermediate impact on nucleolar structure; green: strong effects on nucleolar 
structure. Classification on manual ground truth (referred to as “manual 
classification”, see Supplementary Fig. 2). 
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Supplementary Table 6: Histogram low tail index (𝜏" = 100, 𝛼 = 150), number of 
uplands region (𝜏() = 100, 𝜏(+ = 200), and smallest local minimum (𝜏- = 100) (∞ 
indicates the absence of a local minimum) in the largest connected component of 
the texture segmented images derived from Supplementary Fig. 15. 
(a) nucleoli from 12 SCR-treated control cells, (b) nucleoli with high level of 
nucleolar disruption, (c) nucleoli from cells depleted of a protein of interest (see 
Supplementary Fig. 15). 
 

Feature Principal component Second principal 
component 

AAlcc 0.4808 -0.4864 
SRlcc -0.5503 -0.6191 
THlcc 0.3772 0.3789 

TLMlcc -0.4470 0.2151 
TVlcc 0.3521 -0.4363 

 
Supplementary Table 7: Two most significant PCA vectors. 
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Supplementary Note 1: pseudo-code for nuclei segmentation 
 
Inputs: 
𝐼: image 
λ1<	λ2<⋯<	λ𝑘<⋯<	λ𝐾: thresholds on intensity 
𝑆: minimal area threshold for eligible connected component 
𝑆5-6: maximal nucleus area  
𝜕𝐼 : boundary of the image 𝐼  (first and last rows and 
columns) 
 
 
Output: 
𝐶 : set of connected components associated to segmented 
nuclei  
 
𝐼1←𝐼>	λ1  
𝐷 ← 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠(𝐼))  
𝐶) ← 𝑑 ∈ 𝐷	 	𝑎𝑟𝑒𝑎 𝑑 > 𝑆   
For 𝑘 = 2⋯𝐾 
𝐼𝑘←𝐼>λ𝑘  
𝐷 ← 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠(𝐼K)  
𝐶K ← ∅  
For all 𝑐	 ∈ 	𝐶KM) 
𝐿 𝑐 = 	 𝑑 ∈ 𝐷	 	𝑑 ⊂ 𝑐         % connected components in 𝑐 
𝐿P 𝑐 = 	 𝑑 ∈ 𝐿 𝑐 	 	𝑎𝑟𝑒𝑎 𝑑 > 𝑆  % components in 𝐿(𝑐) larger than 

𝑆 

If 𝐿 𝑐 == 1 	∧ 	 𝐿P 𝑐 == 1 	∧ 	 5R-S_(S"RST("U VW(X)
5R-S_(S"RST("U X

> 1.15 	∨

	 𝐿P 𝑐 ≥ 2   

% one big connected component with important gain in 
intensity 

% OR at least two big connected components 
𝐶K ← 𝐶K ∪ 𝐿P(𝑐)  

Else % keep 𝑐 
𝐶K ← 𝐶K ∪ 𝑐   

End if 
End for all 

End for 
% Remove the connected components that are too big or that 
touch the image boundary 
𝐶 ← 𝑐 ∈ 𝐶]	 	 𝑎𝑟𝑒𝑎 𝑐 < 𝑆5-6 		∧ 	𝑖𝑠_𝑒𝑚𝑝𝑡𝑦(𝑐 ∩ 𝜕𝐼)   
	
Softwares The image processing code was programmed in MatLab. The 3-D 
models of ribosomal subunits were generated with Pymol v1.5.0.3, the images for 
microscopy illustrations produced with ImageJ (http://imagej.nih.gov/ij/), and the 
graphs generated and analyzed with Prism.  
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Supplementary Methods 
 
Image processing analysis 
In this supplemental section of our manuscript, we describe our procedure to 
extract qualitative and quantitative morphometric information from nucleoli using 
a low dimensional feature vector. Our aim was to provide a statistically validated 
tool to discriminate between populations of normal and altered nucleoli. 
 
Overview  
First, we describe how individual cell nuclei are segmented within each image of 
the database, in order to localize individual cells nucleoli. Then, we present the 
methodology adopted to derive a small set of shape and textural features that 
characterize the nucleolar morphology in each individual cell nucleus. Finally, we 
present a quantitative analysis of the differences observed between the 
distributions of these features in populations of cells depleted for specific gene 
products and the ones of a reference population. This leads us to use 
dimensionality reduction techniques, to stratify and rank the r-proteins according 
to their impact on the nucleolar structure. The stratification is based on a Principal 
Components Analysis (PCA) of the five distances (dk, k≤5) measured between 
the distributions observed for a population of cells depleted for a given r-protein 
and those observed for a reference population of cells (SCR-treated cells), each 
distribution being associated to a specific shape/texture feature. For the ranking, 
we introduce an index of nucleolar disruption, or iNo, corresponding to the sum of 
the five absolute |dk| values. 
 
1. Cell nuclei segmentation 
As an initial step to delimit cell nucleoli from individual cells we segmented the 
cell nucleus. Each cell has a single nucleus. The nucleoli are specialized 
subnuclear domains, which, by definition, are all contained within the nucleus. 
Segmenting the nucleus, which is dense, compact and easy to score, is thus a 
mean to delimit the cellular volume that contains nucleoli in each individual cell.  
 
Nuclei are stained with the DNA stain DAPI. The nuclei contours are extracted 
from the DAPI channel (blue) in two steps. Firstly, large connected components 
of relatively high intensity are identified using an original adaptive thresholding 
method. Secondly, the connected components that show significant concavity, 
indicating they likely correspond to aggregated nuclei, are rejected 
(Supplementary Fig. 14). 
 
Step 1 consists in a stepwise thresholding of the DAPI images such that nuclei 
corresponding to sufficiently large connected components of pixels lying above 
an intensity threshold are selected. Although all parameters of samples 
preparation (cell seeding, transfection procedure, DAPI staining, cell fixation, etc.) 
and of image capture (illumination, exposure time, etc.) are fully standardized and 
automatized, we observed an inherent variability in the DAPI signal intensity of 
individual nuclei. Supplementary Fig. 15 compares two extreme cases of such 
variability in panels (a) and (b). To address this we adopt a hierarchical 
thresholding strategy that progressively refines the segmentation by considering 
a sequence of K increasing thresholds, while exploiting prior knowledge about the 
size range of human cell nuclei. Detailed nuclei segmentation pseudo-code is 
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provided in Supplementary Note 1. In short, let λk denote the kth intensity 
threshold, with 0 < k ≤ K, and λk < λk+1, ∀ k < K. Let Ik denote the thresholded 
binary image, i.e. Ik (x) = 1 if I (x) > λk, and 0 elsewhere, with x ∈ [1,H] x [1,W], H 
and W denoting the height and width of the image, respectively. We also 
introduce Ck to denote the set of sufficiently large (compared to a size threshold 
S) connected components at step k. At initialization, C1 includes the connected 
components in image I1 that are larger than S. The set Ck+1 of connected 
components at step k+1 is then derived iteratively from Ck and Ik+1, as follows. 
Ck+1 is initialized to the empty set. For each connected component c ∈ Ck, we 
considered the list L(c) of connected components in Ik+1 that are included in c. If 
L(c) includes at least two connected components with sizes larger than S, then 
those connected components are added to Ck+1.  If the list L(c) includes a single 
connected component c’ larger than S, then either c’ or c are added to Ck+1, 
depending on whether the gain in mean intensity between c and c’ is larger or 
smaller than 15%, respectively. Note that a higher gain in mean intensity reveals 
a more accurate segmentation, and that the value of 15% was set empirically. If 
the list L(c) does not include any component larger than S, then c is added to 
Ck+1. The connected components in CK that are smaller than a threshold Smax are 
expected to reasonably segment the nuclei. Practically, the threshold S and Smax 
have been set to 500 and 5000 pixels, so as to include most of the size range of 
human cell nuclei. Regarding λk, we considered a sequence of thresholds 
increasing from 250 to 450 by steps of 20, and from 500 to 1300 by steps of 100. 
The resulting nuclei segmentation appeared to be relatively independent of the 
actual sequence used, as long as its range and granularity were sufficient. 
 
As a second step, we consider the rejection of the connected components that 
likely correspond to multiple nuclei in CK. For this, we analyzed the convexity of 
each connected component (Supplementary Fig. 14). Specifically, a number of 
lines are drawn in parallel to the two principal axis of the connected component. 
When the connected component is convex, either one or zero segment lies inside 
the contour, for all parallel lines. In contrast, when the connected component 
represents aggregated nuclei, it presents a strong concavity and there exist 
parallel lines that include two or more segments lying inside the contour. If one 
parallel line supports two sufficiently long inner segments that are separated by a 
sufficiently long outer segment, the connected component is rejected. In 
Supplementary Fig. 14, the length of the outer and inner segments respectively 
correspond to δout, δ1

in, and δ2
in. Those lengths have to be larger than a threshold 

of 5 pixels to reject the component. The threshold value has been set empirically 
to drastically reduce the number of multiple nuclei while keeping most of the 
single nuclei, compared to a manually generated ground truth. C denotes the 
subset of CK that includes all and only all non-rejected components. 
 
Among the nuclei segmented in C, we were only really interested to analyze 
further those of cells in interphase. To identify them, the DAPI image and the 
distribution of FIB-GFP (green channel) in the segmented component are 
considered. A cell is considered to be in interphase if the DAPI is sufficiently 
dense and spread (if at least 50% of the pixels in the nucleus have a normalized 
DAPI value larger than 0.47, with the DAPI image being normalized by its 
maximal value.), and if the FIB-GFP is sufficiently localized (if at least 50% of the 
pixels in the nucleus have a normalized FIB-GFP value lower than 0.53, with the 
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FIB-GFP image being normalized by its maximal value). The thresholds were set 
on the basis of a manual ground truth annotation of the images. These thresholds 
are quite stringent and their use results in the loss of a small fraction of cells in 
interphase, however our aim to only consider cells in interphase for further 
analysis is successfully achieved. 
 
Finally, as a post-processing step, to ascertain all nucleoli of a cell are contained 
in each segmented regions, we apply basic mathematical morphology to close 
and enlarge each connected regions. Specifically, a dilation by a 13 x 13 
structuring element was followed by a 3 x 3 erosion.  
 
As depicted in Supplementary Fig. 15, our proposed method segments nuclei 
effectively, both in highly (panel a) and weakly (panel b) contrasted DAPI images. 
In this figure, the set of connected components that segment interphase nuclei 
are depicted in red. A reasonable detection rate was achieved, in conjunction with 
a very small false positive rate. This result is well suited to our needs since we 
are not interested in detecting all nuclei but rather in collecting a sufficient number 
of representative nucleoli patterns samples from each FIB-GFP image.  
 
2. Nucleoli image features 
This section introduces the image features that we consider to discriminate 
normal and altered nucleoli morphology in FIB-GFP images1.  
 
Section 2.1 introduces a number of original parameterized image features to 
measure the most significant visual differences observed in a set of 
representative nucleoli. Section 2.2 optimizes the parameters of those features, 
so as to maximize the discrimination between the distributions of the features in r-
proteins-depleted cells and SCR-treated control cells.  
 
2.1 Discriminant nucleolar morphometric features 
The distribution of the nucleolar masses within a cell nucleus soon appeared to 
be subject to important stochastic variability. This is well illustrated in 
Supplementary Fig. 16, showing digitally resected nucleoli from control cells 
(panel a) and from cells depleted of specific proteins of interest (panels b, c). In 
these, the spatial organization of the nucleolar masses with respect to the 
nucleus center or to its principal axis fluctuates substantially across the images of 
a given panel, and do not help in differentiating the images from each panel. 
Hence, any features that would measure how the nucleolar topology is defined in 
terms of the absolute and normalized position of its components are not relevant 
to our problem. For example, the popular object recognition approaches that 
define the object appearance in terms of the intensities and gradients observed 
on small patches defined by their size and location in a normalized image do not 
help12-14. The same holds true regarding transport-based features15-17, since they 
measure the discrepancy compared to a reference distribution of masses, which 
is not available here.  
 

                                            
1 For each segmented nucleus, its FIB-GFP signal is normalized by a percentile of 99.9% and all 
the features presented in this section are computed on this normalized signal. 
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We therefore consider the definition of a set of ad-hoc features that are 
independent of the actual position of the nucleoli within the nucleus, while still 
reflecting the spatial spreading of the nucleolar masses. Those features have 
been defined based on a manually-selected set of image samples, depicting 
typical normal and abnormal nucleolus patterns (see Supplementary Fig. 16). The 
manual extraction of representative samples is required to derive features that 
are relevant to the problem at hand, i.e. to make sure that the set of investigated 
features are able to discriminate among the variety of nucleolus appearances. 
However, to avoid (over)fitting our investigated features to those manually 
annotated samples, in the rest of the section, each feature is systematically 
defined as a parametric function, so that its parameters can be optimized over the 
entire database to make the feature can differentiate between normal and gene-
depleted cells images (see Section 2.2). 
 
To derive our set of parametric features, Supplementary Fig. 16 presents a set of 
manually-selected cells nucleoli images that are representative of the appearance 
diversity in reference control cells, and in cells depleted of proteins of interest. 
Panel c (resp. b), shows that the nucleoli from cells depleted of specific proteins 
of interest (resp. nucleoli with very high level of disruption) are generally spread 
over large and often irregular shapes, which contrasts with the rather circular spot 
distribution observed in control cells (panel a).  
 
In addition, the 3-D graphs depicted in Supplementary Fig. 17 reveal that the 
distribution of FIB-GFP intensity of normal nucleoli is smoother and less peaky 
than in nucleoli of cells depleted of a protein of interest. Those observations 
motivated us to use features that characterize: (i) the area of support, (ii) the 
shape regularity, and (iii) the variations of intensities, i.e. the texture, of the 
nucleolar GFP signal. 
 
Practically, for each nucleus, all our proposed features are defined with respect to 
the segmentation of the nucleolus masses into a set of disjoint connected 
components. This segmentation is obtained by FIB-GFP image thresholding, 
which means that a pixel is considered to be part of the nucleolus if its intensity 
lies above the threshold. For each feature, the segmentation threshold parameter 
is defined automatically according to the method proposed in the next section, so 
as to maximize the separation between the distributions of the features for SCR-
treated control cells and for cells depleted of proteins of interest. Hence, the 
segmentation threshold is a feature parameter, and might vary from one feature 
to the other. Other feature parameters are optimized similarly, and are thus 
defined automatically, as described in the next section. 
 
-Area of support: 
To characterize the area of support of the nucleolus, we first consider the size 
and number of connected components obtained after thresholding with a so-
called area segmentation threshold τa.  Specifically, 
• AAlcc measures the area of the largest connected component in the 

thresholded image, and 
• ANcc denotes the number of connected components in the nucleus. 
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In addition, to characterize the sharpness of the intensity gradient along the 
frontier delimiting the nucleolar masses, we introduced a sharpness index AS that 
measures the ratio of the nucleus pixels that respectively lies above two 
thresholds τi1 and τi2, with τi1 > τi2. 
 
-Shape and texture: 
To characterize the shape and the texture of the nucleolus, we only consider the 
largest connected component obtained after segmentation, because the small-
sized components naturally tend to reduce to single circular peaks, making the 
largest connected component more representative with respect to shape and 
texture.  
 
Shape: 
To quantify the nucleolus shape regularity, we adopt a shape segmentation 
threshold τs, and consider three distinct shape factors to characterize the shape 
of the largest connected component in the segmented image. Each factor 
describes the shape independently of its size.  
 
They are illustrated in Supplementary Fig. 18, and correspond to: 
• The elongation shape factor SElcc, which is defined as the square root of the 

ratio of the two second order moments, 𝜆)  and 𝜆+ , of the connected 
component c around its principal axes; 

• The elliptical regularity factor SRlcc, which is defined as the ratio between the 
area of the connected component, and the area of the smallest ellipse lying 
outside the connected component, and having the same center, the same 
principal axes, and the same elongation than the connected component. 

• The concavity factor SClcc, which is defined as the ratio between the area of 
the connected component and the area of its convex hull. 

 
Texture: 
To characterize the nucleolar texture pattern, after having investigated without 
any success (data not shown) some conventional texture descriptors such as the 
local binary patterns18, the region covariance19, or the grey level aura matrices20, 
we introduced a number of original scalar metrics to reflect the distribution of 
intensities inside the largest connected component segmented based on a 
texture segmentation threshold τt. Those metrics are: 
• The texture histogram low tail index THlcc , which measures the percentage of 

pixels that lie below some intensity threshold α, while being located inside the 
erosion of the connected component by a 3 x 3 pixels structuring element21. 
An erosion is applied to the shape to get rid of the low intensity pixels lying on 
the border of the shape; 

• The texture uplands index TUlcc, which is defined to be the number of 
connected regions lying above a threshold β, while being inside the connected 
component;  

• The texture peaks index TPlcc, which is defined to be the number of local 
maxima in the connected component; 

• The texture valleys index TVlcc , which is defined to be the number of local 
minima in the connected component; 
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• The texture local minimum TLMlcc, which is defined as the intensity of the 
smallest local minimum in the connected component; 
 

As can be observed in Supplementary Table 6 and Supplementary Fig. 19, those 
scalar features have reasonably distinct values for the representative images 
depicted in Supplementary Fig. 16. Supplementary Fig. 19 illustrates that the 
number of local minima (red dots) is generally more important in morphologically 
disrupted nucleoli (panel b and c) than in control nucleoli (panel a). We thus 
expect that they are appropriate to differentiate normal from altered nucleoli (see 
below). 
 
2.2. Supervised optimization of features parameters 
This section explains how the parameters involved in the definition of the above 
features are selected to best discriminate between normal and altered nucleoli.   
 
Following the Fisher’s criterion introduced by the popular Linear Discriminant 
Analysis (LDA)22, we propose to select those parameters so as to maximize the 
separation between the features distributions that we want to discriminate.  
 
In short, the Fisher’s optimization criterion considers the problem of estimating 
whether a feature can discriminate between two classes of data, knowing the 
feature values for a representative set of data samples from each class. A natural 
step to answer this question consists in looking at the average (or the mean) of 
the feature values from each class. Intuitively, the closer the means are, the less 
discriminant the feature is. This is because a large distance between the means 
implies that the gap between the classes is expected to be large in the 
corresponding feature space. However, before drawing a conclusion about this 
gap, we also need to account for the spreading of the features around their 
respective mean, so that we can decide whether a given distance between the 
means is significant or not. Based on this reasoning, Fisher has defined the 
separation between the distributions associated to two classes of observations to 
be the ratio of the squared distance between the means to the sum of the 
variance within each class22. We adopted the same criterion to optimize the 
parameters of our features. In other words, a discriminant feature is one for which 
the class-means are well separated, measured relative to the (sum of the) 
variances of the data assigned to a particular class.  
 
Formally, considering a feature, parameterized by a vector p lying in a parameter 
space P, we assume that the feature distributions are known as a function of p, 
for the two classes of observations that we want to best discriminate. Then, the 
Fishers’ optimization criterion informs us that the vector p* that maximizes the 
separation between the class distributions is defined as: 
 

𝒑∗ = argmin
𝒑	∈j

𝜇)(𝒑) − 𝜇+(𝒑) +

𝜎)(𝒑)+ + 𝜎+(𝒑)+
  , 

 
where µ1(p), µ2(p) and σ1(p), σ2(p) respectively denote the means and standard 
deviations of the distributions of the feature of interest, measured with parameter 
p for the two classes. This Fisher’s criterion is equivalent to the Welch’s 
adaptation of the t-test23, widely used in image-based morphometry24. 
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Since it relies on the distributions of features that are observed for the two 
classes to discriminate, our proposed parameter optimization method has to be 
supervised. In our case, we know by design of our experimental set up which 
cells images correspond to control and (gene-depleted) test cells. Hence, we can 
readily identify pairs of distributions that should be discriminated one from the 
other. Practically, we selected the parameters so as to maximize the sum of the 
separation measured between each pair of distributions extracted from SCR-
treated control cells, and from cells depleted of a protein of interest. 
 
Supplementary Fig. 20 presents the Fisher’s optimization criterion for three 
different features, as a function of their associated parameter. We observe that 
the parameter selection significantly impact the discriminative power of the 
feature. 
 
It is worth noting here that our methodology has been defined to limit the impact 
of supervision on the outcome of the data mining process presented in Section 3. 
Specifically, supervision is deliberately restricted to the independent selection of 
individual feature parameters, without being involved in how the resulting features 
will be combined in the next section, based on a strictly unsupervised approach. 
Moreover, by defining the features parameters to differentiate distributions of 
samples extracted from the same culture, we avoid biasing the selection of 
features induced by the exploitation of a class containing different kind of 
deviations compared to the reference class.  
 
3. Nucleolar features distribution analysis 
This section analyzes how the distributions of the features of nucleoli observed in 
SCR-treated control cells compare to those of nucleoli of cells depleted of a 
protein of interest. As a primary objective, we aimed at quantifying the degree of 
nucleolar disruption associated with the depletion of a specific protein, based on 
the analysis of the distribution of the features of the associated nucleoli. 
Therefore, we introduced a discrepancy vector. Each component of this vector is 
associated to a specific feature, and measures the separation between the 
reference distribution and the gene-depleted distribution of interest. We then 
defined the index of nucleolar disruption, or iNo, to be the L1-norm of the 
discrepancy vector. This allowed us to rank the degree of severity of nucleolar 
disruption.  
 
As a second and complementary outcome, we analyzed the principal 
components among the set of discrepancy vectors, assuming linear embedding 
for dimensionality reduction. It allows for extracting and visualizing the major 
trends affecting the morphology of the nucleolus when it is subject to gene-
depletion. This allowed us to regroup nucleolar disruption phenotypes in classes 
in an unsupervised fashion. 
 
3.1. Discrepancy-based distribution characterization 
A discrepancy vector is defined so as to summarize how the features distributions 
associated to a set of nucleoli differ from their corresponding reference 
distributions. 
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Formally, let Sr and Sk denote two sets of nucleoli images, respectively obtained 
from normal reference cells and from cells that have been subject to the kth gene 
depletion process, i.e. to the kth silencer. For a given image feature f, we define 
the discrepancy dk between set Sk and the reference Sr to be the ratio of the 
difference of the mean feature values on each set to the sum of their variance. 
The definition naturally extends to N features fi, 0<i≤N, and the ith component of 
the discrepancy vector dk associated to the set Sk writes 

𝒅K 𝑖 = 	 pq ( Mpr (

sq
t ( usrt (

  , 

with µk(i), µr(i) and σk(i), σr(i)   denoting the means and standard deviations of the 
ith feature over sets Sk and Sr, respectively. 
 
3.2. L1 norm of discrepancy vectors 
To quantify the disruption level associated with the depletion of a specific protein 
of interest, we defined an index of nucleolar disruption, or iNo, as the L1-norm of 
the discrepancy vector computed over the set of nucleoli images obtained from 
cells depleted for that given protein of interest (Supplementary Fig. 21). 
Letting Sk denote the set of nucleoli obtained upon treatment with silencer k, and 
N be the 11 features defined in Section 2.1, the nucleolus disruption index Δk is 
measured as: 

∆K= 𝑑K 𝑖w
(x) . 

 
3.3. Principal component analysis of discrepancy vectors 
Principal components analysis (PCA) is an unsupervised method for 
dimensionality reduction. PCA is used to visualize the most important phenotypic 
classes observed in our work. PCA searches for directions in the data that have 
the largest variance, and subsequently projects the data onto it. Following such 
an approach, we obtained a lower dimensional representation of the data, which 
removes some of the ‘noisy’, supposedly less meaningful, directions. 
 
Since we are interested to score the nucleolar disruption associated with the 
depletion of particular proteins of interest, we applied the PCA to the discrepancy 
vectors that capture the average trends associated with nucleoli in cells depleted 
with a specific silencer, and not to individual nucleolar feature vectors. 
 
To facilitate the interpretation of the eigenvectors associated to the principal 
components, we only consider the 5 features that have the largest Fisher’s score, 
i.e. which best discriminates normal and altered nucleoli. Those features are 
listed in the first column of Supplementary Table 7. 
 
Supplementary Fig. 22 presents a PCA scatter plot depicting the 2-D points 
obtained by projecting each discrepancy vector on the two most significant PCA 
components. We observed that the PCA analysis has successfully found linear 
combinations of the proposed features that separate out the ground truth clusters, 
corresponding to different levels of disruption and phenotypic classes. We indeed 
observe visually that the nature of the disruption changes depending on the 
position in the scatter plot. 
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Supplementary Table 7 presents the first two principal components, i.e. the two 
directions of maximal variability of the projected discrepancy vectors. It reveals 
the main trends in the disruption process.  
From the signs of the components in the first vector, we learned that the 
dominant disruption process increases the area of the nucleolus (AAlcc), and 
reduces its elliptical regularity (SRlcc). It also increases the number of low intensity 
pixels in the segmented nucleoli (THlcc), as well as the deepness (TLMlcc) and 
number of local minima (TVlcc), which reflects the scattered nature of the nucleoli 
spread. 
The second vector induces an opposite trend compared to the one induced by 
the first vector, except for the elliptical regularity (SRlcc) and for the histogram low 
tail index (THlcc). Hence, a positive second PCA coefficient tends to foster the 
decrease of elliptical regularity, while a negative second PCA coefficient mitigates 
it, compared to what would result from the single vector only. This is reflected in 
Supplementary Fig. 22 by more regular and circular shapes of the nucleolus 
masses in case of negative second PCA coefficient. In contrast, a positive 
second PCA coefficient corresponds to a more severe disruption, with less 
regular shape than the one observed for nucleoli of similar size in absence of 
second PCA component. 
It is well established in the literature that inhibition of RNA polymerase I (Pol I) 
leads to a very specific nucleolar morphology alterations referred to as “nucleolar 
segregation” or “nucleolar caps” 25. Such caps are for example observed when 
cells are treated with low doses of actinomycin D, or in our experimental set up, in 
cells depleted of the Pol I transcription factor TIF1A (Supplementary Fig. 22, caps 
are seen as tiny bright dots). 
As an illustration that the PCA analysis is a powerful method to classify in an 
unsupervised fashion distinct nucleolar disruption phenotypes, nucleoli of cells 
depleted of TIF1A, which in agreement with the literature25 have a markedly 
different nucleolar disruption phenotype by comparison to the other control or test 
cells, correspond to two magenta triangles totally isolated in the upper left corner 
of the graph and characterized by a negative first PCA component value, which is 
in contrast to most other magenta triangles corresponding to cells depleted for 
other test genes. 
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